SVD Based Feature Selection and Sample Classification of Proteomic Data
نویسندگان
چکیده
Feature selection becomes a central task when ’signature’ profiles specific to a pathological status have to be extracted from high dimensional gene expression or proteomic data. In the present paper, we propose a feature selection method based on Singular Value Decomposition (SVD) and apply it to SELDI-TOF/MS proteomic data from a cohort of Type 2 Diabetics affected by Glomerulosclerosis and Membranous Nephropathy. We have selected a profile composed of 24 proteins that seems to be an effective signature for the pathology at hand, allowing to efficiently discriminate between the considered subtype of diabetes.
منابع مشابه
Feature Extraction of Visual Evoked Potentials Using Wavelet Transform and Singular Value Decomposition
Introduction: Brain visual evoked potential (VEP) signals are commonly known to be accompanied by high levels of background noise typically from the spontaneous background brain activity of electroencephalography (EEG) signals. Material and Methods: A model based on dyadic filter bank, discrete wavelet transform (DWT), and singular value decomposition (SVD) was developed to analyze the raw data...
متن کاملOptimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines
In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...
متن کاملOptimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines
In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...
متن کاملA New Hybrid Feature Subset Selection Algorithm for the Analysis of Ovarian Cancer Data Using Laser Mass Spectrum
Introduction: Amajor problem in the treatment of cancer is the lack of an appropriate method for the early diagnosis of the disease. The chemical reaction within an organ may be reflected in the form of proteomic patterns in the serum, sputum, or urine. Laser mass spectrometry is a valuable tool for extracting the proteomic patterns from biological samples. A major challenge in extracting such ...
متن کاملA Novel Scheme for Improving Accuracy of KNN Classification Algorithm Based on the New Weighting Technique and Stepwise Feature Selection
K nearest neighbor algorithm is one of the most frequently used techniques in data mining for its integrity and performance. Though the KNN algorithm is highly effective in many cases, it has some essential deficiencies, which affects the classification accuracy of the algorithm. First, the effectiveness of the algorithm is affected by redundant and irrelevant features. Furthermore, this algori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008